When scientists discover a distant planet that is made of diamonds (Bailes et al. 2011), public admiration is virtually assured. When the same scientific method yields findings that impinge on corporate interests or people’s lifestyles, the public response can be anything but favorable. The controversy surrounding climate change is one example of a polarized public debate that is completely detached from the uncontested scientific fact that Earth is warming from greenhouse gas emissions (e.g., Cook et al. 2013). How can scientists navigate those contested waters, and how can the public’s legitimate demand for involvement be accommodated without compromising the integrity of science?
Denial of Science
Public debate and skepticism are essential to a functioning democracy. There is evidence that skeptics can differentiate more accurately between true and false assertions (Lewandowsky et al. 2009). However, when tobacco researchers are accused of being a “cartel” that “manufactures alleged evidence” (Abt 1983, 127), or when a U.S. senator labels climate change a “hoax” that is ostensibly perpetrated by corrupt scientists (Inhofe 2012), such assertions are more indicative of the denial of inconvenient scientific facts than expressions of skepticism (Diethelm and McKee 2009). The dividing line between denial and skepticism may not always be apparent to the public, but existing research permits its identi fication because denial expresses itself in similar ways regardless of which scientific fact is being targeted (Diethelm and McKee 2009). For example, denial commonly invokes notions of conspiracies (Lewandowsky et al. 2015; 2013; Mann 2012). Conspiratorial content is widespread in anti-vaccination material on the Internet (Briones et al. 2012) as well as on blogs that deny the reality of climate change (Lewandowsky et al. 2015).